欢迎光临
专业的主机评测网站

聚类分析方法有哪些

聚类分析是一种无监督学习技术,用于将具有相似特征的数据点分组。常见的聚类分析方法包括:k-means、层次聚类、平均偏移聚类、ward’s 法、dbscan、optics 和谱聚类。

聚类分析方法有哪些

聚类分析方法

聚类分析是一种无监督学习技术,用于将数据点分组为具有相似特征的聚类。以下是常用的聚类分析方法:

1. K-Means

K-Means是一种基于划分的聚类算法,它将数据点分配到事先定义的k个聚类中。算法迭代地将数据点分配到最近的聚类中心,然后更新聚类中心,直到算法收敛。

2. 层次聚类

层次聚类通过逐步合并或拆分数据点来构建一个层次结构的聚类。它产生一个称为树状图的图表,显示聚类的层次关系。

3. 平均偏移聚类

平均偏移聚类是一种基于距离的聚类算法,它通过计算每个数据点与其他所有数据点的距离来确定聚类。它通过迭代地合并最接近的数据点来构建聚类。

4. Ward’s 法

Ward’s 法是一种基于方差的聚类算法,它通过最小化聚类中数据的方差来确定聚类。它通过迭代地合并方差最小的数据点来构建聚类。

5. DBSCAN

DBSCAN是一种基于密度的聚类算法,它识别数据空间中的高密度区域作为聚类。它通过指定相邻数据点的最小数量(epsilon)和半径(minPts)来确定聚类。

6. OPTICS

OPTICS是DBSCAN的扩展,它提供了聚类结构的层次视图。它通过计算每个数据点与其他所有数据点的可达距离来生成一个可达性图。

7. 谱聚类

谱聚类是一种使用图论技术进行聚类的算法。它通过将数据表示为图,然后使用图的特征向量来确定聚类。

赞(0)
【声明】:本博客不参与任何交易,也非中介,仅记录个人感兴趣的主机测评结果和优惠活动,内容均不作直接、间接、法定、约定的保证。访问本博客请务必遵守有关互联网的相关法律、规定与规则。一旦您访问本博客,即表示您已经知晓并接受了此声明通告。

专业的主机评测网站

国内/国外VPS测评、云服务器评测,从VPS或IDC商家的资质、客服水平、售后服务、VPS线路、服务器硬件、主机性能等、访问速度进行云主机、IDC测评。

联系我们联系我们